
Eurographics/ IEEE-VGTC Symposium on Visualization (2006)
Thomas Ertl, Ken Joy, and Beatriz Santos (Editors)

Terrain Rendering using Spherical Clipmaps

Malte Clasen and Hans-Christian Hege

Zuse Institute Berlin, Germany

Abstract
We describe a terrain rendering algorithm for spherical terrains based on clipmaps. It leverages the high geometry
throughput of current GPU to render large static triangle sets. The vertices are displaced by a height map texture.
Our main contribution is mapping of texture coordinates to calculate the heightmap sample position based on the
static vertex offset and the variable view position.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling

1. Introduction

Terrain rendering has a broad range of applications from
science, e.g. cartography and landscape planning, to enter-
tainment, e.g. outdoor games and movies. We focus on the
serious applications that usually don’t allow artistic tricks
to hide technological deficiencies. The target is quite sim-
ple to state: We want to visualize spherical terrains (whole
planets) on many scales (from space flight to sunday after-
noon walk) on commodity hardware. This imposes two ma-
jor challenges: The size of the data exceeds the capabilities
of current PCs by far and numerical errors of 32 bit float-
ing point numbers, the maximum accuracy of current GPU,
become relevant.

2. Existing technology

Previous publications and applications can be divided into
two parts: Those with planar terrain and those with sperical
terrains. Both converge to the same solution with increasing
scale, and there are many cases where a planar terrain is ab-
solutely sufficient. But in the real world, you just cannot see
from Lisbon to New York.

2.1. Planar terrain

Many popular terrain rendering algorithms deal with pla-
nar terrain. Losasso and Hoppe categorize them as follows
[LH04]:

• Irregular meshes (a.k.a. triangulated irregular networks)

• Bin-tree hierarchies (a.k.a. longest-edge bisection, re-
stricted quadtree, hierarchies of right triangles)

• Bin-tree regions (coarser than Bin-tree hierarchies)
• Tiled blocks (square patches that are tessellated at differ-

ent resolutions)

The error for a given number of triangles increases with
each category. Irregular meshes result in the best possi-
ble approximation but requires a large computational over-
head. In practice, tiled block algorithms can take advan-
tage of the huge geometry bandwidth of current GPU most
effectively and overcompensate their deficiencies in accu-
racy. Losasso introduces the Geometry Clipmaps algorithm
in [LH04] which is especially designed for this bandwidth.
Asirvatham and Hoppe further improve it in [AH05] to han-
dle most of the computations on the GPU.

2.2. Spherical terrain

Although the same categorization is valid for spherical ter-
rain, most research seems to focus on planar terrain. O’Neil
[O’N01] and Hill [Hil02] tried to extend the ROAM al-
gorithm [DWS∗97] (bin-tree hierarchy) to handle spheri-
cal surfaces, but Hill dropped this approches in favor of
a tiled block solution in the same publication. Cignoni
et.al. introduce a bin-tree region type algorithm, they ex-
tend the BDAM algorithm [CGG∗03a] to planets (P-BDAM)
[CGG∗03b]. All solutions have in common that they par-
tition the planet into square regions, using a cube as base
geometry.

The popular terrain viewers Google Earth (http://

c© The Eurographics Association 2006.

http://earth.google.com/

M. Clasen & H.-C. Hege / Spherical Clipmaps

earth.google.com/) and NASA World Wind (http://
worldwind.arc.nasa.gov/) apparently use tiled block ap-
proaches, but these solutions are not published.

3. Spherical clipmaps

We chose to extend the GPU-based geometry clipmaps by
Asirvatham to spherical terrains because of the following
reasons:

• The rendering speed depends on the screen resolution, not
on the size of the digital elevation model (DEM) and the
corresponding surface color texture. This basic feature of
each LOD algorithm is handled exceptionally well by the
underlying clipmap. Image resampling is a thoroughly re-
searched domain and this knowledge can be applied di-
rectly in the construction of the clip map.

• Different levels of detail can be blended smoothly even
when they are more than one level apart.

• Rendering can be limited on-the-fly to the coarsestn lev-
els without overhead in case streaming data is late or the
framerate does not meet the requirements.

• The implementation is simple because the geometry is sta-
tic and the only image operation is copying regions be-
tween buffers.

• The technique is quite fast and the current bottleneck, ver-
tex texture look-ups, is expected to disappear with unified
shaders.

The following changes to the original algorithm enable
spherical terrains:

3.1. Clipmaps

The original Clipmap by Tanner [TMJ98] is a texture rep-
resentation that can be used to display textures of virtually
unlimited size with maximum detail around a variable focus
point. It resembles a mipmap pyramid where each level is
clipped to a fixed number of samples around the focus point
(fig. 1). When a level is sampled, it is first tested whether
the sampling point lies in the clipped region. If not, the next
higher level is searched, which covers an area four times as
large. This results in a memory requirement ofO(logn) for
a base texture of sizen.

Losasso and Hoppe used this representation for height
maps. This effectively enables the usage of arbitrary height
map sizes independent of run-time memory requirements
and provides an inherent level of detail representation that
reduces rendering time similar to memory. Each ring is ren-
dered using the same number of vertices just as each ring
contains the same number of image samples.

Since the main feature of Geometry Clipmaps is the static
geometry relative to the viewer (plus some minor transla-
tion), this support geometry had to be changed to accom-
modate our parametrisation: Any rectangular grid aligned to
the underlying parametrisation changes its shape with the

Figure 1: The clipmap contains a fixed-size segment of each
mipmap level around an arbitrary focus point.

distance to the poles of the planet. The problems becomes
inevitably visible when the viewer is close to the pole: The
support geometry becomes infinitely thin towards the pole
and stops there as spherical coordinates do not wrap around
in θ direction.

In the following we replace the underlying geometry with
one that maps better to the sphere. No matter how far away
the viewer is relative to the planet, he cannot see more of it
than one hemisphere. This led to the idea of using concentric
rings instead of rectangles. The resulting spherical Geometry
Clipmap is displayed in fig.2.

Figure 2: We use circular instead of rectangular rings to
cover the hemisphere.

3.2. Map parametrisation

The trivial parametrisation of the plane,(x,y), cannot be
transfered directly to the sphere. However, an equally sim-
ple parametrisation exists: Spherical coordinates, denoted by

c© The Eurographics Association 2006.

http://worldwind.arc.nasa.gov/

M. Clasen & H.-C. Hege / Spherical Clipmaps

(φ,θ) ∈ [0,2π)× [0,π) (fig. 3). Given a coordinate system
with the axes(x,y,z), a point p on the unit sphere can be
parametrized by its angletheta to thez-axis, and the angle
phi from p projected to thex,y-plane to thex axis.(0,0,1)
and(0,0,−1) can be denoted as north and south pole respec-
tively. All points with the samephi belong to a meridian, the
0-meridian intersects the positivex-axis.

Figure 3: The sphere can be parametrized by(φ,θ) which
map directly to a planar rectangle.

3.3. Map transform

Since we want to focus the clipmap around the viewer, we
have two different spaces: The world space(x,y,z) that pro-
vides an absolute orientation of the spherical terrain and the
view space(x̃, ỹ, z̃) that locates the viewer at the north pole.
The introduction of the view space enables a static geome-
try (vertices plus connectivity) that has to be calculated and
transferred to the GPU only once. The hemisphere around
the viewer is parametrized by(φ̃, θ̃) whereas the terrain is
parametrized by(φ,θ). The mapping between both spaces
(fig. 4) depends on the position of the viewer (in world
space),(φv,θv).

We can assume without loss of generality that the viewer
v is located exactly above the 0-meridian at(0,θv) since any
deviation inφv translates directly to a simpleφ-offset in the
height map. Thus we need a mapping

f (θv, φ̃, θ̃) → (φ,θ). (1)

This mapping is a rotation around they-axis as we chose the
0-meridian to intersect the positivex-axis (fig.5).

A point p̃ on the hemisphere with the local spherical co-
ordinates(φ̃, θ̃) has the coordinates

p̃ =

cos̃φ ·sinθ̃
sinφ̃ ·sinθ̃

cos̃θ

 (2)

Figure 4: Points on the view hemisphere are transformed
into world space to sample the rectangular height map.

Figure 5: For φv = 0, the hemisphere is rotated only around
the y-axis.

in view space. The rotation affects only thex andz coordi-
nates, resulting in:

p =

cosθv · p̃x−sinθv · p̃z

py

−sinθv · p̃x +cosθv · p̃z

 (3)

This point is converted back into spherical coordinates by:
(

φ
θ

)

=

(

tan−1 py
px

cos−1(pz)−θv

)

(4)

Note that we subtractθv from θ to set the origin of the trans-
formed coordinate system to the position of the viewer. This
offset and the previously fixedφv = 0 define the focus point
of the clip map.tan−1 has to take into account the quadrant
in which (py, px) lies, similar toatan2() in C.

For a vertex on the hemisphere, we precalculate ˜p on the
CPU and pass it as vertex attribute to the vertex shader where

c© The Eurographics Association 2006.

M. Clasen & H.-C. Hege / Spherical Clipmaps

the next two steps are performed. The per-frame-constants
cosθv and sinθv can also be calculated on the CPU and
passed as uniforms to the shader.

3.4. Discretization

The original Geometry Clipmaps use a rectangular support
geometry that is aligned to the grid of the underlying raster
data. Since rectangular grids are the native representation of
textures on current GPU and also quite common in cartogra-
phy and artistic terrain generation, we continue to use it al-
though it does not allow a direct correspondence of vertices
to height samples. We use spherical coordinates to transform
map the height texture (parametrized by(s, t)) to the spheri-
cal surface:(s, t) = (φ,θ).

The hemisphere(φ̃, θ̃) is discretized into quads.φ̃ is sim-
ply divided into n fixed steps. The discretization ofθ̃ de-
pends on the distance to the viewer: Low levels of detail
(far away) require less steps per distance than higher levels.
The first level of discretization divides the hemisphere into
the concentric rings that shrink exponentially: Leveli cov-
ersθ̃ ∈ (2−iπ,2−i−1π]. This sequence is terminated by a fill
level that covers̃θ ∈ (2−i−1π,0]. Each level is subdivided
into m rings by θ̃i, j = θi,0 ∗ 2− j/m. Each discrete element
of the hemisphere is then partitioned into two triangles. The
resulting geometry ensures that the triangles have about the
same size in screen space (fig.6).

Figure 6: Triangles twice as far away are rendered twice as
small, so our expontially growing triangles have about the
same size in screen space.

The disadvantage of this solution compared to the original
GPU-based Geometry Clipmaps is the 1:1 correspondence
of vertices and height samples had to be dropped. One ad-
vantage is that no special case handling is required to cir-
cumvent the T-intersections at level boundaries: The con-
stant discretization of̃φ implies the gapless geometry transi-
tion.

4. Algorithmic details

There are few more algorithmic differences to Asirvatham’s
Geometry Clipmaps that are caused by the new mapping:

4.1. Texture sizes in map space

The size of a support geometry level in map space is now
dependent on the position of the viewer: A circular ring with
a diameter of 1m covers aφ range of about 2π

40,000 if the
viewer is located at the earth equator. The same ring cov-
ers the whole 2π if the viewer is standing less than 1m away
from the north pole. Therefore the map space range of the
clipmap texture has to be chosen according to the current
φv. There is no direct dependence onθv apart from the fact
that the texture can be clipped atθ < 0 andθ > π since map
sampling does not cross the poles.

This anisotropic range is shown in fig.7. The level covers
a map range ofφ = 2π if the level diameter̃θ is less than the
distance to the nearest pole:(θ̃ > θv)∨ (θ̃ > π−θv).

Figure 7: The world space size of the clipmap regions have
to be chosen according toθv to handle the anisotropy.

One of the advantages of the wrap-around clipmap up-
dates is that small movements of the viewer cause small tex-
ture updates. If we use the texture completely for any given
φ-range, a small movement ofθv would require an update of
the whole texture. Therefore we change the texture range in
power of two steps and use only a subset of the texture. For
instanceφ-ranges of 0.3π and 0.4π both result in a texture
that covers 0.5π. This results in an ammortized complexity
that matches the original Geometry Clipmaps.

4.2. Aliasing

The missing direct correspondence of height map samples
to vertices introduces a possible source of aliasing: The base
signal (height map) is resampled at a different rate by the
support geometry. The triangles equal a linear interpolation

c© The Eurographics Association 2006.

M. Clasen & H.-C. Hege / Spherical Clipmaps

which is a less than perfect reconstruction filter. Resampling
at a frequency that is at least as high as the sampling fre-
quency of the source signal ensures that the aliasing is min-
imized and no detail is lost , but the lower the source signal
rate, the lower the visual details of the terrain. A good choice
is a resampling rate that roughly equals the source sampling
rate: If you discetrizẽφ into n steps, then a texture width of
n
4 is sufficient since this texture has aboutn boundary texels.
Any texture size between this upper bound andn

8 should be
fine, assuming that̃θ is discretized at a similar resolution.

4.3. Clipmap filtering

The clipmap pyramid is based on successively downscaled
images. This scaling is performed in map space, but re-
sampling by the support geometry vertices is performed in
3D world space. This introduces another possible source of
aliasing since the source density inφ direction at the poles is
far higher than at the equator. Having the same number ofφ
samples is merely an artefact of the chosen parametrisation,
so the signal bandwidth has to be limited artificially. This
can be done by using a special filter kernel: Common im-
age resampling algorithms use circular kernels. They match
the circular shape of the support geometry, so the same strat-
egy can be applied. The filter kernel should be defined in
3D world space and transformed to map space as described
in 3.3. This way the bandwidth is limited so that the resam-
pling by the support geometry works as expected.

4.4. Texture coordinates beyond poles

The arcus tangent in the calculation ofp′′ in 3.3works based
on the assumption that the map wraps around inφ direction:
The texture coordinates decrease towardsφ = −π and in-
crease towardsφ = +π. They meet at theπ-meridian exactly
beyond the pole. There’s no problem mathematically, but the
discretization causes an artefact at that point. The texture co-
ordinates are interpolated across the triangles, so the last tri-
angle in one of the two directions interpolates fromε to 1
instead to 0 (fig.8, left).

Figure 8: Texture coordinate interpolation results in arte-
facts beyond the poles, so one line of vertices has to be du-
plicated.

This can be fixed by duplicating the vertices on that
meridian: Since the support geometry is always oriented

with φ̃ = 0 in north direction, only one line of vertices re-
quies special handling. One vertex of each pair gets a special
attribute that is used in the vertex shader to correct the tex-
ture coordinate. We determine whether the pair lies beyond
a pole (compare toθv) and subtract 1 from the calculated
textureφ coordinate, so the interpolation across the triangles
works as expected (fig.8, right).

4.5. Level visibility

Not all circular rings of the hemisphere are visible from each
position. The lower bound (low detail, far away) is deter-
mined by the earth curvature, the upper bound (high detail,
near) by the height above the local surface. The lower bound
can be estimated as shown in fig.9: The heighth of the
viewer above the spherical planet surface (radiusr) deter-
mines the tangent cone to the planet. The terrain beyond this
θ̃max is hidden by the earth curvature (note that the minimum
level of detail corresponds to the maximumθ̃):

Figure 9: Visibility of the lower levels of detail depends pri-
marily on earth curvature and the distance to the surface.

(r +h) ·cos̃θmax = r (5)

⇔ θ̃max = cos−1 r
r +h

(6)

This calculation does not take the slope of the terrain into
account (e.g. high mountains might be clipped early), so you
might want to add a safety factor to this approximation.

The upper bound is calculated based on the requirement
that triangles should cover at least one pixel in screen space.
The sizes of one screen pixel on the surface of the planet
depends on the heighth of the viewer, the field of view angle
f ovand the number of pixels #p per scanline (fig.10):

s≈ h · tan
f ov
#p

(7)

c© The Eurographics Association 2006.

M. Clasen & H.-C. Hege / Spherical Clipmaps

Figure 10: Visibility of the higher levels of detail depends
on the screen resolution and the distance to the surface.

The upper bound̃θmin follows directly:

θ̃min =
s

2πr
·2π =

s
r

(8)

5. Implementation

The following aspects deal with the implementation on cur-
rent consumer GPUs. Using vertex texture look-ups cur-
rently limits the technique to NVIDIA NV40 and G70 class
GPU (Geforce 6600, 6800, 7800) since ATI does not support
this feature up to the R520 line (Radeon X1800). A possi-
ble work-around is the render to vertex buffer support that
allows using the pixel shader to calculate the actual vertex
positions in a pre-pass. We focussed on the NV40 and found
the following issues:

5.1. Trigonometric function replacement

Calling trigonometric functions in the vertex shader is a
possible bottleneck. Our map transform algorithm relies on
tan−1 andcos−1 that cannot be precalculated efficiently. But
there’s another way out: The distortion of the circular ring in
map space is quite low for higher levels of detail (smallθ̃).
Figure11 illustrates this for̃θ < π

128 andθv = 3
8π. These in-

ner rings can be transformed using a simple approximation
for p′′φ :

φ = tan−1 py

px
(9)

= tan−1 p̃y

cosθv · p̃x +sinθv · p̃z
(10)

≈ p̃y ·

(

1+
1
π

1
4 − (θv

π −
1
2)2

−
(θv

π −
1
2)2

6
−

4
π

)

(11)

–1.5

–1

–0.5

0

0.5

1

1.5

–3 –2 –1 1 2 3

–0.02

–0.01

0

0.01

0.02

–0.03 –0.02 –0.01 0.01 0.02 0.03

Figure 11: φ̃- andθ̃-iso-lines in world space(φ,θ): Whereas
the overall distortion of the mapped hemisphere is quite
large, the area around the viewer is only stretched inφ-
direction.

The distortion term depends only onθv and can thus be pre-
computed on the CPU. This empirically derived approxima-
tion is tuned to the following setting:̃θ should be small, for
instance< π

1024, andθv should be not too near to the poles,
e.g.π 1

48 < θv < π 47
48. These limits result in an relative ap-

proximation error 1− approximated
exact (fig. 12) less than 0.001

for φ̃ = π
2 . We consider this value acceptable for interactive

rendering.

Apart from the slow computation,tan−1 has another
drawback: The accuracy ofatan(y,x) on the NV40 is
quite limited for smallx, so higher levels of detail show
significant errors in theφ texture coordinate (fig.13). The

c© The Eurographics Association 2006.

M. Clasen & H.-C. Hege / Spherical Clipmaps

–0.0008

–0.0006

–0.0004

–0.0002

0
0.5 1 1.5 2 2.5 3

Figure 12: The relative approximation error stays below
0.001for π 1

48 < θv < π 47
48

simple solution is to use the approximation formula at least
starting at the levels that exhibit the incorrect behaviour.

Figure 13: The inaccuracy of the tan−1-implementation
causes distortion in the texture coordinate calculation: The
centralφ line should be straight, not jagged.

As motivated above, the inner rings resemble a stretched
circle. Therefore theθ-direction requires no further calcula-
tions and can be approximated as follows:

θ = cos−1(pz)−θv (12)

= cos−1(−sinθv · p̃x +cosθv · p̃z)−θv (13)

≈ θ̃ (14)

This approximation is also usable under the previously men-
tioned conditions. If we take all possible view positions into

account,θv is relatively large compared̃θ in the higher lev-
els of detail in most cases (except close to the north pole).
Therefore the numerical error in the calculation ofθ intro-
duced by the differencecos−1(pz)− θv dominates the er-
ror of this approximation, so this very simple approximation
suffices. Nevertheless the result is visually acceptable.

Note that you should blend from approximated to exact
calculation to avoid gaps in the terrain (fig.14).

Figure 14: Missing blending between exact calculation and
approximation can lead to gaps.

5.2. Speed

The main bottleneck is the vertex texture look-up: Since we
had to drop the 1:1 correspondence, we have to use tex-
ture filtering to avoid the strong artefacts of nearest neighbor
sampling. The NV40 is not capable of filtering vertex tex-
tures, but bilinear filtering can be emulated using 4 samples.
The blending region between two levels of detail requires
trilinear filtering (8 samples). This overhead hides any other
possible bottlenecks, even the trigonometric functions do not
affect the framerate in this case. It would be a major limita-
tion of the whole technique, but we expect the vertex texture
lookups to improve as soon as unified shader architectures
become widespread: Common pixel shader units are espe-
cially designed to deal with the latency of texture lookups.
Implementing this into vertex units in separated architec-
tures would increase the chip complexity disproportionately
for a feature that is rarely used in current games. With a uni-
fied shader architecture, vertex shaders could use the same
technology almost for free, so we believe that this bottleneck
will disappear in the next one or two years.

We benchmarked the algorithm on a Pentium 4 (2.4 GHz)
system with NVidia NV40 GPU (325 MHz, Geforce 6800).
The screen resolution of 1280×960 was no bottleneck since
our implementation is vertex shader limited. The test data
set consisted of a height map with 43,200× 21,600 pix-
els (338 MB JPEG 2000 compressed) and a color map with

c© The Eurographics Association 2006.

M. Clasen & H.-C. Hege / Spherical Clipmaps

86,400× 43,200 pixels (203 MB ECW compressed). The
clipmap texture sizes for height map and color map are 1282

and 5122 respectively.̃φ andθ̃ are discretized into 512 steps
(20 θ̃-steps per level). The approximative transform was
used for levels>= 10. In this configuration, the following
views were used: A overview over Lake Garda (Italy) from
the south east with the camera standing on the ground, see
fig. 15. Levels 6 to 21 were rendered (≈ 330,000 triangles
per frame) at 25 frames per second.

Figure 15: Lake Garda, ground view

The second view shows the same area from an aircraft
perspective (fig.16). Levels 3 to 9 were rendered (≈ 140,000
triangles) at 40fps.

Figure 16: Lake Garda, aircraft view

Increasing the altitude again resulted in the third test
case, the space view (fig.17). Levels 1 to 4 were rendered
(≈ 100,000 triangles) at 65fps.

Figure 17: Lake Garda, space view

6. Conclusions

We presented an extension to the GPU-based Geometry
Clipmaps by Asirvatham et.al. that handles spherical ter-
rains. It performs well for a large range of view condi-
tions from space (fig.17) over aircraft heights (fig.16) to
a stroller’s perspective (fig.15). The implementation is sim-
ple and the special cases (texture coordinates beyond poles,
arcus tangent accuracy) can be handled in a few lines of
code. Additional textures such as color map and normal map
can be handled using the same implementation without ad-
ditional effort.

6.1. Future work

Our implementation currently lacks any view frustum
culling. Adding this can result in a speed up of factor 8 for
a field of view of π

2 since the main bottleneck, the vertex
texture lookups, scales linearly.

The addition of render to vertex buffer support is another
target. We don’t expect algorithmic changes but the bottle-
necks might shift to previously unconsidered aspects. A ma-
jor advantage of this solution would be that the geometry
clipmap had to be evaluated only once per change of the
position of the viewer, not once per frame. This should im-
prove the performance for multipass renderings as required
for shadow mapping with one or more light sources.

7. Acknowledgement

We would like to thank the Bundesministerium für Bildung
und Forschung (BMBF,http://www.bmbf.de/) for sup-
porting the SILVISIO project (FKZ 0330560B) for which
this terrain rendering algorithm has been developed. We also
appreciate the publication of the Blue Marble texture set
and the Shuttle Radar Topography Mission data by NASA
(http://earthobservatory.nasa.gov/).

c© The Eurographics Association 2006.

http://www.bmbf.de/
http://earthobservatory.nasa.gov/

M. Clasen & H.-C. Hege / Spherical Clipmaps

References

[AH05] A SIRVATHAM A., HOPPE H.: GPU Gems
2. Addison-Wesley, 2005, ch. Terrain Rendering Using
GPU-Based Geometry Clipmaps, pp. 27–46.http://
research.microsoft.com/~hoppe/.

[CGG∗03a] CIGNONI P., GANOVELLI F., GOBBETTI E.,
MARTON F., PONCHIO F., SCOPIGNO R.: Bdam –
batched dynamic adaptive meshes for high performance
terrain visualization.Computer Graphics Forum 22 (3)
(2003). http://vr.c-s.fr/vplanet/Publications/
Papers/eg2003-bdam.pdf.

[CGG∗03b] CIGNONI P., GANOVELLI F., GOBBETTI E.,
MARTON F., PONCHIO F., SCOPIGNO R.: Planet-sized
batched dynamic adaptive meshes (p-bdam). InVIS ’03:
Proceedings of the 14th IEEE Visualization 2003 (VIS’03)
(Washington, DC, USA, 2003), IEEE Computer Society,
p. 20.

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI

D. E., MILLER M. C., ALDRICH C., MINEEV-
WEINSTEIN M. B.: Roaming terrain: real-time opti-
mally adapting meshes. InVIS ’97: Proceedings of the
8th conference on Visualization ’97(Los Alamitos, CA,
USA, 1997), IEEE Computer Society Press, pp. 81–88.
http://www.llnl.gov/graphics/ROAM/roam.pdf.

[Hil02] H ILL D.: An efficient, hardware-accelerated,
level-of-detail rendering technique for large terrains.
Master’s thesis, Graduate Department of Computer Sci-
ence, University of Toronto, 20002.http://www.magma.
ca/~dhlf/downloads/thesis.pdf.

[LH04] L OSASSOF., HOPPEH.: Geometry clipmaps: ter-
rain rendering using nested regular grids. InSiggraph
2004 (New York, NY, USA, 2004), vol. 23 (3), ACM
Press, pp. 769–776. http://research.microsoft.
com/~hoppe/.

[O’N01] O’N EIL S.: Rendering planetary bodies.Gama-
sutra August 10, 2001(2001).http://www.gamasutra.
com/features/20010810/oneil_01.htm.

[TMJ98] TANNER C. C., MIGDAL C. J., JONES

M. T.: The clipmap: a virtual mipmap. InSIG-
GRAPH ’98: Proceedings of the 25th annual confer-
ence on Computer graphics and interactive techniques
(New York, NY, USA, 1998), ACM Press, pp. 151–
158. http://www.cs.virginia.edu/~gfx/Courses/
2002/BigData/papers/Texturing/Clipmap.pdf.

c© The Eurographics Association 2006.

http://research.microsoft.com/~hoppe/
http://vr.c-s.fr/vplanet/Publications/Papers/eg2003-bdam.pdf
http://www.llnl.gov/graphics/ROAM/roam.pdf
http://www.magma.ca/~dhlf/downloads/thesis.pdf
http://research.microsoft.com/~hoppe/
http://www.gamasutra.com/features/20010810/oneil_01.htm
http://www.cs.virginia.edu/~gfx/Courses/2002/BigData/papers/Texturing/Clipmap.pdf

