
Realistic Illumination of Vegetation in Real-time
Environments

Malte CLASEN, Hans-Christian HEGE

Abstract

In this paper we show how to combine and extend state-of-the-art computer graphics
algorithms for realistic illumination of vegetation. Our main target are realtime rendering
environments, namely the Lenné3D visualization system. We focus on plants near the
viewer where we separate the rendering equation to model the different lighting effects:
Direct sun light is handled by advanced fragment shaders and shadow mapping whereas
indirect light is calculated from environment maps and precomputed radiance transfer
(PRT). This way we can handle both low and high frequency lighting. Soft shadows and
diffuse indirect lighting are contributed by the PRT, hard shadows, diffuse, glossy and
specular direct lighting are calculated using the common rendering pipeline including
shaders. We assume static scenes (fixed terrain and plant positions, fixed lighting) to
precompute the radiance transfer. Note that this does not introduce view dependance.

Our main contribution is the extension of these algorithms to large scenes with a very high
number of objects. Previous work usually covered illumination of single objects. Scene
complexity was hidden by environments maps. In large scenes, one environment map does
not fit all objects due to neighbouring objects occluding parts of the outer scene
environment. This also introduces a source of indirect lighting among different plants. We
propose a new method of clustering and interpolating environment maps to handle the
varying local environments of the plants.

1. Introduction

Landscape visualization in real-time environments on desktop computers has become
possible over the last five years. The Lenné3D Player is capable of rendering scenes with
more than 100.000 plants (Fig. 1), the commercial game Far Cry renders a densely covered
island as a setting for an adventure game (Fig. 2). The sheer number of plants seems to
promise convincing photo-realistic scenes.

M. Clasen, H.-C. Hege

Fig. 1: Lenné3D Player (www.lenne3d.de) Fig. 2: Far Cry (www.farcry.de)

On the other hand, a new kind of physically correct illumination algorithms appeared.
Whereas previous attempts focussed on realistic but non-interactive rendering, Sloan used
consumer graphics hardware to display single objects of competitive realism in interactive
frame rates (Fig. 3).

Fig. 3: Comparison of diffuse, unshadowed illumination and diffuse, interreflected
illumination (Sloan 2002)

Before we proceed with a description on how to combine these two areas of research, we
give a short introduction to the different histories.

2. Previous Work

There are two goals when it comes to realistic image synthesis: In the first place you have to
deal with a very large number of detailed objects that shall be projected onto the screen.
Secondly these object all interact with the light in the scene - the light that finally results in

2

Realistic Illumination of Vegetation in Real-time Environments

your image. These steps are often subject to different research projects although they are
inherently connected.

2.1 Landscape Visualization
Landscape visualization usually concentrates on the handling of large scenes. These scenes
consist of hundreds of thousands of plants, each of which is built from thousands of
primitives. DEUSSEN ET.AL. (1998) developed a software system especially designed to handle
outdoor scenes (Fig. 4). They replaced plants or groups of plants by representative objects
to reduce the memory requirements and divided the scene into small sub-scenes before
rendering.

Fig. 4: Stream Scene (DEUSSEN ET.AL. 1998) Fig. 5: Sunflower Field (DEUSSEN ET.AL. 2002)

DEUSSEN ET.AL. (2002) rendered scenes with 70 million triangles at 3 frames per second by
replacing some parts of the triangle geometry with point and line primitives. This level of
detail technique (LOD) is based on the limited screen resolution: Objects far away from the
viewer are rendered only a few pixels large on the screen. There's no need for thousands of
primitives in this case.

But these approaches have in common that the limit the illumination to quite simple and
physically incomplete or incorrect models. The common rendering interface OpenGL
(SEGAL 2004) offers local illumination, composed of diffuse, specular and ambient terms.
That means there are initially no shadows. It's as if your universe contained the sun and only
one leaf at a time. Light does not reflect from one plant to the next (or itself), nor does it
attenuate while passing though the crown of a tree. These effects can be approximated or
passed over by artistic choice of the colors of the plants, but it's not realistic by default.
Shadow mapping is a common technique to add at least hard shadows to real-time
rendering. MARTIN ET.AL. (2004) describe an algorithm that results in very accurate shadows,
but it's limited to fully opaque objects and light sources that are infinitely far away.

2.2 Realistic Illumination
KAJIYA (1986) proposed an equation to handle basically all light effects, the so called
rendering equation. It can handle all common surface characteristics and results in
physically absolutely correct images. But there's one major draw-back: It's not solvable
analytically. It's main integral is usually approximated stochastically, resulting in an

3

M. Clasen, H.-C. Hege

algorithm called monte-carlo-path-tracing. The other interesting aspect is the modeling of
the surface materials: OpenGL uses colors and color textures for each of it's light effect
terms, but that's usually not sufficient to describe real-world materials. SCHLICK (1993)
described a reflectance model that handles colored multi-layered surfaces that can be
arbitrarily rough and anisotropic. It's main advantage is that it's not only physically corrent
but intuitive. Artists can control it by adjusting just a few parameters to get a wide spectrum
of common real-world materials.

These techniques alone allow the creation of very convincing images, but they are far from
being usable in interactive environments. SLOAN ET.AL. (2002) found a way to use this power
to precalculate the light effects that OpenGL doesn't handle. This so-called precomputed
radiance transfer (PRT) stores how light interreflects on a single object. Combined with an
environment map (a spherical map that records the incoming light at one point in the scene)
this PRT data can be evaluated to the reflected light that is gathered by your virtual camera.

Although it is possible to render single objects in an astonishing quality (Fig. 3), neither
Sloan nor the following papers dealt with scenes with large numbers of objects. This is were
we try to combine the best of these two research areas. But before we continue on
algorithms, we first describe the data we operate on.

3. Data

We target typical natural landscapes with a significant amount of vegetation. Our scenes
remain static, neither objects and plants nor sky and sun move. However, we allow the
viewpoint to change interactively.

3.1 Plants
Out plants are modelled with Xfrog, a system that evolved from LINTERMANN ET.AL. (2002).
The resulting models are converted to a triangle mesh structure, organized by different
materials and textures. The basic mesh properties such as vertex positions are used directly
in our renderer whereas the materials have to be converted. We use the Schlick reflection
model instead of the more common OpenGL lighting equations, so a few parameters can be
reused, but most have to be guessed. This limits direct artistic control over the visualization,
but the results look more realistic. We use a two layered material, the upper layer being
glossy and white, the lower diffuse and colored. This allows typical glossy reflections of
wax surfaces while it retains the distinct coloring of the lower leaf cells.

Another step that makes a significant difference in perceived realism is the generation of
normal maps. The models usually come with color maps only, so we cannot use the real
height structure of the surfaces. We approximate the height by the mean color intensity of
the color map. This has no physical background but showed to be visually pleasing.

3.2 Terrain
The terrain is given as a combination of height map and color map. Both have a limited
resolution that fit well into texture memory of current GPU, so no special geometry
streaming algorithms have to be used.

4

Realistic Illumination of Vegetation in Real-time Environments

3.3 Sky
The sky is our only source of illumination. We use images with extremely high dynamic
range (1:600,000), kindly provided by STUMPFEL ET.AL. (2004). We determine the sun
position and extract it from the image, so we can handle it as a usual distant directional light
source in the following rendering steps. This preserves the realism by using images of real
skies while reducing the algorithmic effort to efficient and well known techniques.

4. Rendering

The system is optimized for the stroller's perspective. We assume that only a few medium or
large plants (trees, shrubs) are in the near field, so most of the trees cover only a small area
on the screen. Detailed illumination cannot be perceived for these plants, so we can use the
common algorithms for most of the scene. Only a few plants need improvement.

4.1 LOD Extension to Higher Detail
The LOD approach by DEUSSEN ET.AL. (2002) started with detailed plant geometry and
reduced the number of primitives for improved rendering speed. We extend the quality
scale in the other direction: We add physically correct illumination to the detailed model.
Since only very few plants are rendered at the highest level of detail, the cost for the
additional computations remains manageable. The rendering system can choose from a
wider range of quality levels, so it's not only possible to improve speed by removing details
but to improve quality on fast hardware platforms.

The basic idea is to add Sloan's PRT to the models. Since there are only a few hundred
models instanced numerous times in the scene, the memory overhead is negligible. But
there's still a problem: Due to restrictions of the graphics hardware and algorithmic
shortcomings with PRT, we can only use it for low frequency lighting. This means that we
can have soft shadows, smooth colored reflections and translucence, but there's no way to
store the shadow of direct sun light.

4.2 Direct and Indirect Light
Sun light is basically the only light in outdoor scenes that's capable of creating hard
shadows. So why not handle this case separately? Kajiya's rendering equation allows us to
split the lighting into two parts: Light that comes directly from the light source, in our case
the sun, and light that has been reflected at least once. This indirect light has the nice
property of having hardly any high frequencies: Natural surfaces usually reflect light diffuse
or glossy. Specular reflections happen on water surfaces, but these are only perceivable as
such in absence of wind and flow, so we can safely omit them. Diffuse and glossy reflection
distribute the light over a wide angle, so there's no way in practice reflected light can throw
hard shadows.

So we use two different lighting terms when rendering the scene. On the one hand there's
direct light. This closely resembles the default OpenGL rendering pipeline, but we use
custom shaders instead of the diffuse/ambient light model. This allows us to integrate
Schlick's shader model and Martin's shadow mapping. On the other hand there's the PRT,

5

M. Clasen, H.-C. Hege

also integrated into our shaders. But we still need the environment maps to evaluate the
PRT. The PRT itself is stored with the model, but the environment maps are required for
each instance. Since storing the positions of each plant is already problematic for large
scenes, storing complete environment maps is next to impossible. We only need a few maps
while rendering a single frame, but since the viewer can be anywhere in the scene, we don't
know which ones are unnecessary, we have to store them all.

Let's have a closer look at these environment maps. They represent the incoming light,
similar to a 360° panorama photo. Low resolution maps suffice, so they appear quite blurry
when displayed directly. This property can be used for a simple but helpful observation:
The environment maps of two adjacent plants are usually similar. So you can build clusters
of environment maps where each plant uses a map that is reconstructed from the nearest
cluster maps. This clustering and interpolation scheme has to adapt to the local situation.
You cannot aggregate the environment maps of border plants where one plant is illuminated
from the side whereas the other is located among equally high individuals.

PAULY ET.AL. (2002) compare different simplification strategies for point based geometry.
The clustering by region growing approach fits our needs. You start with one sample and
add its neighbours to the cluster until a certain error threshold is reached. Then you proceed
with the nearest unclustered sample and build the next group.

5. Results

Since we are currently bug fixing and evaluating, we cannot show final results. These are
expected to be available in february, so the final paper will have a proper result
presentation. For now, we can show you a two images that were produced during research
and development:

Fig. A: Comparison of placeholder geometry with different lighting terms: Direct lighting
(left), direct and indirect lighting (right)

6

Realistic Illumination of Vegetation in Real-time Environments

6. Conclusion

Since we still don't have our final results, it's hard to conclude. Intermediate results look
promising, however it's still unclear how well these methods work on slightly flawed plant
models. New visualization routines frequently show previously hidden errors in models that
simply do not matter in conventional rendering methods. We expect that some more
research in plant model preprocessing is required to fully leverage the strength of our
proposed visualization system.

7. Acknowledgements

All plant models have been built using Xfrog by Greenworks. They are kindly provided by
the Lenné3D project.

8. Bibliography

Deussen, O., Hanrahan, P., Lintermann, B., Mech, R., Pharr, M., Prusinkiewicz, P. (1998):
Realistic modeling and rendering of plant ecosystems, SIGGRAPH 1998

Deussen, O., Colditz, C., Stamminger, M., Drettakis, G. (2002): Interactive Visualization of
Complex Plant Ecosystems. IEEE Visualization 2002

Kajiya, J. (1986): The rendering equation. SIGGRAPH 1986
Lintermann, B., Deussen, O. (1998): A Modelling Method and User Interface for Creating

Plants. Eurographics Computer Graphics Forum Volume 17, Issue 1 (March 1998)
Martin, T., Tan, T. (2004): Anti-aliasing and Continuity with Trapezoidal Shadow Maps.

Eurographics Symposium on Rendering 2004
Pauly, M., Gross, M., Kobbelt, L. (2002): Efficient Simplification of Point Sampled

Surfaces. IEEE Visualization 2002
Schlick, C. (1993): A Customizable Reflectance Model for Everyday Rendering.

Eurographics Workshop on Rendering Proceedings 1993
Segal, M., Akeley, K. (2004): The OpenGL Graphics System: A Specification.

http://www.opengl.org/
Sloan, P., Kautz, J., Snyder, J. (2002): Precomputed Radiance Transfer for Real-Time

Rendering in Dynamic, Low-Frequency Lighting Environments. SIGGRAPH 2002
Stumpfel, J., Jones, A., Wenger, A., Tchou, C., Hawkins, T., Devebec, P. (2004): Direct

HDR Capture of the Sun and Sky. AFRIGRAPH 2004

7

