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Abstract

In  this  paper  we show how to  combine  and  extend  state-of-the-art  computer  graphics
algorithms for realistic illumination of vegetation. Our main target are realtime rendering
environments,  namely  the  Lenné3D visualization  system.  We focus  on  plants  near  the
viewer where we separate the rendering equation to model the different lighting effects:
Direct sun light is handled by advanced fragment shaders and shadow mapping whereas
indirect  light  is  calculated  from environment  maps  and  precomputed  radiance  transfer
(PRT). This way we can handle both low and high frequency lighting. Soft shadows and
diffuse  indirect  lighting are  contributed by the  PRT,  hard  shadows, diffuse,  glossy and
specular  direct  lighting  are  calculated  using  the  common  rendering  pipeline  including
shaders.  We  assume  static  scenes  (fixed  terrain  and  plant  positions,  fixed  lighting)  to
precompute the radiance transfer. Note that this does not introduce view dependance.

Our main contribution is the extension of these algorithms to large scenes with a very high
number of objects.  Previous work usually covered illumination of single  objects.  Scene
complexity was hidden by environments maps. In large scenes, one environment map does
not  fit  all  objects  due  to  neighbouring  objects  occluding  parts  of  the  outer  scene
environment. This also introduces a source of indirect lighting among different plants. We
propose  a  new method  of  clustering and  interpolating  environment  maps to  handle  the
varying local environments of the plants.

1. Introduction

Landscape  visualization  in  real-time  environments  on  desktop  computers  has  become
possible over the last five years. The Lenné3D Player is capable of rendering scenes with
more than 100.000 plants (Fig. 1), the commercial game Far Cry renders a densely covered
island as a setting for an adventure game (Fig. 2). The sheer number of plants seems to
promise convincing photo-realistic scenes.
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Fig. 1: Lenné3D Player (www.lenne3d.de) Fig. 2: Far Cry (www.farcry.de)

On the  other  hand,  a  new kind  of  physically  correct  illumination  algorithms  appeared.
Whereas previous attempts focussed on realistic but non-interactive rendering, Sloan used
consumer graphics hardware to display single objects of competitive realism in interactive
frame rates (Fig. 3).

Fig. 3: Comparison  of  diffuse,  unshadowed  illumination  and  diffuse,  interreflected
illumination (Sloan 2002)

Before we proceed with a description on how to combine these two areas of research, we
give a short introduction to the different histories.

2. Previous Work

There are two goals when it comes to realistic image synthesis: In the first place you have to
deal with a very large number of detailed objects that shall be projected onto the screen.
Secondly these object all interact with the light in the scene - the light that finally results in
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your image. These steps are often subject to different research projects although they are
inherently connected.

2.1 Landscape Visualization
Landscape visualization usually concentrates on the handling of large scenes. These scenes
consist  of  hundreds  of  thousands  of  plants,  each  of  which  is  built  from thousands  of
primitives. DEUSSEN ET.AL. (1998) developed a software system especially designed to handle
outdoor scenes (Fig. 4). They replaced plants or groups of plants by representative objects
to  reduce the memory requirements  and divided the scene into small  sub-scenes  before
rendering.

Fig. 4: Stream Scene (DEUSSEN ET.AL. 1998) Fig. 5: Sunflower Field (DEUSSEN ET.AL. 2002)

DEUSSEN ET.AL. (2002) rendered scenes with 70 million triangles at 3 frames per second by
replacing some parts of the triangle geometry with point and line primitives. This level of
detail technique (LOD) is based on the limited screen resolution: Objects far away from the
viewer are rendered only a few pixels large on the screen. There's no need for thousands of
primitives in this case.

But these approaches have in common that the limit the illumination to quite simple and
physically  incomplete  or  incorrect  models.  The  common  rendering  interface  OpenGL
(SEGAL 2004) offers local illumination, composed of diffuse, specular and ambient terms.
That means there are initially no shadows. It's as if your universe contained the sun and only
one leaf at a time. Light does not reflect from one plant to the next (or itself), nor does it
attenuate while passing though the crown of a tree. These effects can be approximated or
passed over by artistic choice of the colors of the plants, but it's not realistic by default.
Shadow  mapping  is  a  common  technique  to  add  at  least  hard  shadows  to  real-time
rendering.  MARTIN ET.AL. (2004) describe an algorithm that results in very accurate shadows,
but it's limited to fully opaque objects and light sources that are infinitely far away.

2.2 Realistic Illumination
KAJIYA (1986)  proposed  an  equation  to  handle  basically all  light  effects,  the  so  called
rendering  equation.  It  can  handle  all  common  surface  characteristics  and  results  in
physically absolutely  correct images. But there's one major draw-back: It's not solvable
analytically.  It's  main  integral  is  usually  approximated  stochastically,  resulting  in  an
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algorithm called monte-carlo-path-tracing. The other interesting aspect is the modeling of
the surface materials: OpenGL uses colors and color textures for each of it's light effect
terms,  but  that's  usually  not  sufficient  to  describe  real-world  materials.  SCHLICK (1993)
described  a  reflectance  model  that  handles  colored  multi-layered  surfaces  that  can  be
arbitrarily rough and anisotropic. It's main advantage is that it's not only physically corrent
but intuitive. Artists can control it by adjusting just a few parameters to get a wide spectrum
of common real-world materials.

These techniques alone allow the creation of very convincing images, but they are far from
being usable in interactive environments. SLOAN ET.AL. (2002) found a way to use this power
to precalculate the light effects that OpenGL doesn't handle. This so-called precomputed
radiance transfer (PRT) stores how light interreflects on a single object. Combined with an
environment map (a spherical map that records the incoming light at one point in the scene)
this PRT data can be evaluated to the reflected light that is gathered by your virtual camera.

Although it is possible to render single objects in an astonishing quality (Fig. 3),  neither
Sloan nor the following papers dealt with scenes with large numbers of objects. This is were
we  try  to  combine  the  best  of  these  two  research  areas.  But  before  we  continue  on
algorithms, we first describe the data we operate on.

3. Data

We target typical natural landscapes with a significant amount of vegetation. Our scenes
remain static, neither  objects and plants nor sky and sun move.  However,  we allow the
viewpoint to change interactively.

3.1 Plants
Out plants are modelled with Xfrog, a system that evolved from LINTERMANN ET.AL. (2002).
The resulting models  are  converted to  a  triangle mesh structure,  organized by different
materials and textures. The basic mesh properties such as vertex positions are used directly
in our renderer whereas the materials have to be converted. We use the Schlick reflection
model instead of the more common OpenGL lighting equations, so a few parameters can be
reused, but most have to be guessed. This limits direct artistic control over the visualization,
but the results look more realistic. We use a two layered material, the upper layer being
glossy and white, the lower diffuse and colored. This allows typical glossy reflections of
wax surfaces while it retains the distinct coloring of the lower leaf cells.

Another step that makes a significant difference in perceived realism is the generation of
normal maps. The models usually come with color maps only, so we cannot use the real
height structure of the surfaces. We approximate the height by the mean color intensity of
the color map. This has no physical background but showed to be visually pleasing.

3.2 Terrain
The terrain is given as a combination of height map and color map. Both have a limited
resolution  that  fit  well  into  texture  memory  of  current  GPU,  so  no  special  geometry
streaming algorithms have to be used.
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3.3 Sky
The sky is our only source of illumination. We use images with extremely high dynamic
range  (1:600,000),  kindly  provided  by   STUMPFEL ET.AL.  (2004).  We  determine  the  sun
position and extract it from the image, so we can handle it as a usual distant directional light
source in the following rendering steps. This preserves the realism by using images of real
skies while reducing the algorithmic effort to efficient and well known techniques.

4. Rendering

The system is optimized for the stroller's perspective. We assume that only a few medium or
large plants (trees, shrubs) are in the near field, so most of the trees cover only a small area
on the screen. Detailed illumination cannot be perceived for these plants, so we can use the
common algorithms for most of the scene. Only a few plants need improvement.

4.1 LOD Extension to Higher Detail
The  LOD approach  by  DEUSSEN ET.AL. (2002)  started  with  detailed  plant  geometry  and
reduced the number of primitives for  improved rendering speed.  We extend the quality
scale in the other direction: We add physically correct illumination to the detailed model.
Since  only very few plants  are  rendered  at  the highest  level  of  detail,  the cost  for  the
additional  computations  remains  manageable.  The  rendering  system can  choose  from a
wider range of quality levels, so it's not only possible to improve speed by removing details
but to improve quality on fast hardware platforms.

The basic idea is to add Sloan's PRT to the models. Since there are only a few hundred
models instanced numerous times in the scene,  the memory overhead is negligible.  But
there's  still  a  problem:  Due  to  restrictions  of  the  graphics  hardware  and  algorithmic
shortcomings with PRT, we can only use it for low frequency lighting. This means that we
can have soft shadows, smooth colored reflections and translucence, but there's no way to
store the shadow of direct sun light.

4.2 Direct and Indirect Light
Sun light  is  basically  the  only  light  in  outdoor  scenes  that's  capable  of  creating  hard
shadows. So why not handle this case separately? Kajiya's rendering equation allows us to
split the lighting into two parts: Light that comes directly from the light source, in our case
the sun,  and light  that  has been reflected at  least  once.  This indirect  light  has the nice
property of having hardly any high frequencies: Natural surfaces usually reflect light diffuse
or glossy. Specular reflections happen on water surfaces, but these are only perceivable as
such in absence of wind and flow, so we can safely omit them. Diffuse and glossy reflection
distribute the light over a wide angle, so there's no way in practice reflected light can throw
hard shadows.

So we use two different lighting terms when rendering the scene. On the one hand there's
direct  light.  This  closely resembles  the default  OpenGL rendering pipeline,  but  we use
custom shaders  instead  of  the  diffuse/ambient  light  model.  This  allows us  to  integrate
Schlick's shader model and Martin's shadow mapping. On the other hand there's the PRT,
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also integrated into our shaders. But we still need the environment maps to evaluate the
PRT. The PRT itself is stored with the model, but the environment maps are required for
each instance.  Since storing the positions of each plant is already problematic for large
scenes, storing complete environment maps is next to impossible. We only need a few maps
while rendering a single frame, but since the viewer can be anywhere in the scene, we don't
know which ones are unnecessary, we have to store them all.

Let's have a closer look at  these environment maps.  They represent the incoming light,
similar to a 360° panorama photo. Low resolution maps suffice, so they appear quite blurry
when displayed directly. This property can be used for a simple but helpful observation:
The environment maps of two adjacent plants are usually similar. So you can build clusters
of environment maps where each plant uses a map that is reconstructed from the nearest
cluster maps. This clustering and interpolation scheme has to adapt to the local situation.
You cannot aggregate the environment maps of border plants where one plant is illuminated
from the side whereas the other is located among equally high individuals.

PAULY ET.AL. (2002) compare different simplification strategies for point based geometry.
The clustering by region growing approach fits our needs. You start with one sample and
add its neighbours to the cluster until a certain error threshold is reached. Then you proceed
with the nearest unclustered sample and build the next group.

5. Results

Since we are currently bug fixing and evaluating, we cannot show final results. These are
expected  to  be  available  in  february,  so  the  final  paper  will  have  a  proper  result
presentation. For now, we can show you a two images that were produced during research
and development:

Fig. A: Comparison of placeholder geometry with different lighting terms: Direct lighting
(left), direct and indirect lighting (right)
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6. Conclusion

Since we still don't have our final results, it's hard to conclude. Intermediate results look
promising, however it's still unclear how well these methods work on slightly flawed plant
models. New visualization routines frequently show previously hidden errors in models that
simply  do  not  matter  in  conventional  rendering  methods.  We  expect  that  some  more
research  in  plant  model  preprocessing  is  required  to  fully  leverage the  strength  of  our
proposed visualization system.
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